(define (f-acc pred? op id term a next b) (cond ((> a b) id) ((pred? a) (op (term a) (f-acc pred? op id term (next a) next b))) (else (f-acc pred? op id term (next a) next b)))) (f-acc (lambda (x) (= (remainder x 3) 0)) + 0 (lambda (x) (* x x)) 1 (lambda (x) (+ x 1)) 10) |